
1 1 

OpenProdoc 

Benchmarking the ECM OpenProdoc v 0.8. 

Managing more than 200.000 documents/hour in a SOHO installation. 

 

February 2013 



2 

Index 

 Introduction 

 Objectives 

 Description of OpenProdoc 

 Test Criteria 

 Infrastructure 

 Realization of the Test 

 Results and Graphs 

 Analysis and Conclusions 

 Using OpenProdoc 

 

 



3 

Introduction 
 OpenProdoc is an Open Source ECM Document 

Manager developed in Java. 

 This document describes different Load Tests 

performed over several days with OpenProdoc v 0.8. 

 The objective of the tests was to measure the behavior 

of OpenProdoc in different scenarios and to measure 

the speed that can be obtained with a small 

infrastructure that can be used even by the smallest 

organization. 

 The tests were run using a program developed for the 

tests. It’s known the expression “Lies, big lies and 

statistics”, so the source and a “test kit” are available 

with the  version 0.8 program.  With the kit it’s possible 

to run the test in your environ and compare the results. 



4 

Objectives 
 The tests were defined with three objectives: 

◦ To check the behaviour of OpenProdoc under stress conditions, 

detecting potential problems. 

◦ To measure the speed to manage documents 

◦ To detect the influence of different factors in the performance of 

OpenProdoc. 

 It wasn't objective of the tests finding the database nor 

the O.S. that works best with OpenProdoc. 

 There are too many elements that can affect the 

behavior of any product, so it was elected to limit to a 

manageable number of significant factors. 

 For automating the test was developed a program that 

allows to execute different sets of tests and measure 

results.  

 



5 

Description of OpenProdoc (I) 
 To better understand the elements to be measured and 

the influence of different factors, it is first necessary to 

briefly explain the architecture of OpenProdoc.  

 The heart of OpenProdoc is its core. The core manages 

all the logic and functionality of the product. 

 The core include “connectors” for managing all its 

functionality.  There are different connectors for each 

functionality (Metadata management, Document’s 

repositories, Authentication) and it’s possible to develop 

and include new connectors of each class. 

 The core itself is very small (<1M) so can be embedded 

in any application. The Swing and Web clients of 

OpenProdoc embed the core, and any application (J2EE 

or not) can embed also the core. 

 



6 

Description of OpenProdoc (II) 
 

 

 

Core 

Metadata 

Connector 

DD.BB. 

Metadata 

Repository 

Connector  

DD.BB. Blob 

Documents 

Repository 

Connector  
Filesystem 

Authentication

Connector  Ldap 
Authentication

Connector 
DD.BB. 

Authentication 



7 

BB.DD. 

Metadato 

Description of OpenProdoc (III) 

Java  Application 

(Swing / thick client) 

 

 

DD.BB. 

Metadata 

Filesystem 

OPD Core 

J2EE Web Client 

OpenProdoc 

 

 OPD Core 

J2EE Application 

 
OPD Core 

Filesystem 

OPD Core 

Connector 

MD OPD 

Under Development 



8 

Test Criteria (I) 
 The test is based in a simple program developed for the 

test, not in the OpenProdoc clients. There are several 

reasons for this election: 

◦ The Swing client is not valid due its single user/thread nature.  

◦ A test with the Web client deployed in any J2EE application 

server mixes the J2EE server performance, the simulated 

“browser” performance and the OpenProdoc Engine 

performance.  

◦ Additionally, the use of ajax distorts this kind of test. 

◦ The OpenProdoc core can be embedded in any application. 

 So the solution selected is to test the OpenProdoc 

core with a multithread development.  

 This shows the OPD raw performance and makes very 

easy to test different combinations and also to 

reproduce the tests in any environ and installation.  



9 

Test Criteria (II) 
 Additionally, many ECM products include some kind of 

“Bulk Loader”.  

 When a project requires to load thousands or hundreds 

of thousands of documents every day, it’s unusual to  

use the standard client.  A Scanning capture system, a 

massive loader, some kind of development or EAI is 

used.  

 In OpenProdoc, the API used in the Load Test is the 

standard API, not a program using some “backdoor 

access”. So this is the performance that any 

development or integration can obtain. 

 Therefore, the tests measure the speed and the 

influence of different factors in the performance of the 

OpenProdoc core. 

 

 

 



10 

Test Criteria (III) 
 What are the factors studied? 

1. Running the core and the server in the same machine or 

different machines. 

2. Different number of threads. 

3. Document types of different complexity. 

4. Different size of documents. 

5. Different database servers. 

6. Different kind of repositories 

 In every test, it’s measured the speed of four common 

operations over documents: 
◦ Insert 

◦ Download 

◦ Delete 

◦ Purge 

 Also it’s monitored the JVM running the OpenProdoc 

core to show the load over the computer. 

 



11 

Test Criteria (IV) 
 The test were intended to be repeatable and “real”, no 

a “laboratory test”, so: 

◦ The databases used are two Open Source Databases:  

 HSQLDB (used in the portable version of OpenProdoc) 

 MySQL (Widely used in many projects) 

◦ The databases are used “out-of-the-box”, without any fine-

tuning. 

◦ The computers are desktop and portable PC with very standard 

specifications, no dedicated servers. 

◦ The Lan is connected using a home ADSL router. 

 



12 

Infrastructure (I) 
 Test series with 1 PC: 
 PC 1: 

◦ OS: Linux Mint 14. kernel 3.5 32 bits 

◦ CPU: AMD Phenom II X4 955. 4 nucleus  1.6 GHz 

◦ RAM: 4 G. 

◦ Disc: 500G SATA 

◦ Java 1.6.0.22 

 Functions: 

◦ Database server (HSQLDB 2.2.8,  MySQL 5.5.29) 

◦ Repository server (File System) 

◦ Test-OpenProdoc run (OpenProdoc 0.8) 

 

 

 



13 

Infrastructure (II) 
 Test series with 3 PC: 
 PC 1: 

◦ OS: Linux Mint 14. kernel 3.5 32 bits 

◦ CPU: AMD Phenom II X4 955. 4 nucleus  1.6 GHz 

◦ RAM: 4 G, Disc: 500G SATA 

◦ Java: 1.6.0.22 

◦ Function: Database server (HSQLDB 2.2.8) 

 PC 2: 

◦ OS: Windows 7 Profesional 32bits 

◦ CPU: Intel Centrino Core Duo T7500 2 nucleus 2.2GHz 

◦ RAM: 3 G, Disc: 200G 

◦ Function: Repository server (FileSystem) 

 PC 3: 

◦ OS: Windows 7 Enterprise 32bits 

◦ CPU: Intel Core i5. 4 nucleus 2.4GHz 

◦ RAM: 4 G, Disc: 250G 

◦ Java: 1.6.0.22 

◦ Function: Test-OpenProdoc run (OpenProdoc 0.8) 

 

 

 



14 

Infrastructure (III) 
 Test series with 3 PC: 

 

 

 
PC 3: Test / OpenProdoc Core 

PC 1:  Database Server 

PC 2: File Server (*) 

*  It was intended to use a (home) NAS disk as File server,  but the 

measures showed a very low speed. (x4 slower than PC 2).  Some 

Internet investigations showed that the family of disk has some speed 

problems, so the test results were discarded. 



15 

Realization of the Test 
 The program developed for the test, executes the 

instructions: 
◦ Reads the configuration file, that details the document to be 

inserted, the number of threads,  the number of documents to 

be used and the document type. 

◦ Creates local copies of the source documents, so that they are 

inserted from different files and not always from the same file in 

cache. 

◦ Creates a folder in OpenProdoc for storing the folders and 

documents of the tests. 

◦ For every set of tests: 
 Starts the specified number of threads for insertion. 

 Measures the time from the start of the first thread to the end of the 

last thread. 

 Repeats the process for download threads, delete threads and purge threads. 

 Saves the measured data 

 Deletes the downloaded documents 

◦ Deletes the local copies of the document used for insertion. 

 

 



16 

Results and Graphs. Local Tests (I) 
 Test managing from 1 to 30 threads, 2.000 to 60.000 docs of 100k 

 

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

0 5 10 15 20 25 30

Docs.Ins/h

Docs.Down/h

Docs.Del/h

Docs.Purge/h



17 

Results and Graphs. Local Tests (II) 
 The graph shows the times measured running the 

OpenProdoc core, the database and the repository in 

one computer. 

 The maximum number of documents inserted (878.000 

docs/h) is obtained using 5 threads. 

 The Download, Purge and Delete functions decrease 

with the number of threads, but even with 30 threads, 

the purge and delete rate is around 100.000 docs/h. 

 This configuration has the advantage of avoiding 

communications, but the disk and CPU have a higher 

load. 

 

 



18 

Results and Graphs. Doc. Type (I) 
 Test managing from 1 to 10 threads, 2.000 to 20.000 docs of 100k in two types 

 

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

0 1 2 3 4 5 6 7 8 9 10

Ins DocBasic/h

Ins DocComp/h

Del DocBasic/h

Del DocComp/h



19 

Results and Graphs. Doc. Type (II) 
 The graph shows the times measured running the 

OpenProdoc core, the database and the repository in 

one computer with two document types, the basic type 

and a compound type, subtype of the first one. 

 The document types in OpenProdoc are structured as 

related tables, so when the hierarchy level grows, the 

operations affect to more tables and are slower. 

 The insertion speed is very similar because the time is 

used mainly in the upload and storing of the file  in the 

repository. 

 Operations as delete or queries are slower for complex 

types because internally OpenProdoc needs to access 

more tables. 

 



20 

Results and Graphs. HSQLDB vs MySQL (I) 

 Test managing from 1 to 10 threads, 2.000 to 20.000 docs of 100k in two DD.BB. 

 

500.000

1.000.000

1.500.000

2.000.000

2.500.000

3.000.000

0 1 2 3 4 5 6 7 8 9 10

Ins DocHSQLDB/h

Ins DocMySQL/h

Del DocHSQLDB/h

Del DocMySQL/h



21 

Results and Graphs. HSQLDB vs MySQL (I) 

 The graph shows the times measured running the 

OpenProdoc core, the database and the repository in 

one computer with different database servers. 

 With the default configuration, the performance obtained 

with HSQLDB is better than with MySQL, not only in 

operation with documents management but in operations 

with metadata management (the Delete only moves 

documents to the trash bin, without actually deleting the 

file, that is eliminated with the Purge). 

 MySQL maintains the performance when increasing the 

number of threads, however HSQLDB decreases the 

performance, although is always better than MySQL. 

 Of course, with fine tuning of the databases, the values 

probably can change, but it’s out of the scope of this tests. 



22 

Results and Graphs. Local vs Remote (I) 
 Test managing from 1 to 10 threads, 2.000 to 20.000 docs of 100k in two architectures 

 

500.000

1.000.000

1.500.000

2.000.000

2.500.000

1 2 3 4 5 6 7 8 9 10

L.Ins/h

L.Down/h

L.Del/h

L.Purge/h

R.Ins/h

R.Down/h

R.Del/h

R.Purge/h



23 

Results and Graphs. Local vs Remote (I) 

 The graph shows the times measured running the 

OpenProdoc core, the database and the repository in 

one computer (local) or in three different computers. 

 In general, the speed when all the elements are in the 

same computer is around 4 times the speed with the 

elements distributed in different computers. 

 The only exception is the delete function due that is 

related only to database and not to repository/filesystem. 

 This shows that a fast filesystem is the key to improve the 

performance with this architecture. 

 Anyway, the insert speed is 200.000 docs/h, the download 

speed is 348.000 docs/h and the purge speed is 300.000 

docs/h, enough throughput for most of the installations. 

 



24 

Results and Graphs. Document Size (I) 
 Test managing from 1 to 5 threads, 2.000 to 10.000 docs of 100k, 200k, 300k and 400k 

 

200.000

400.000

600.000

800.000

1.000.000

1.200.000

1.400.000

1.600.000

1 1,5 2 2,5 3 3,5 4 4,5 5

100.Ins/h

100.Down/h

200.Ins/h

200.Down/h

300.Ins/h

300.Down/h

400.Ins/h

400.Down/h



25 

Results and Graphs. Document Size (II) 

 The graph shows the times measured running the 

OpenProdoc core, the database and the repository with 

document of different sizes. 

 The delete operations affect only to the metadata and 

therefore the speed is similar, with normal statistics 

variations. 

 The purge operations (with file system repository) also 

have little relation with the file size. 

 The insert and download operations show a decrease of 

speed with the file size, but without an apparent 

coefficient. Probably the execution of the sets of tests 

was affected by the garbage collector in the database 

server (Java alone) creating the “steps” in the data. 

 Repeating the group of test, appeared also some “steps” 

but in different places.  



26 

Results and Graphs. Repositories (I) 
 Test managing  2 threads, 4.000 docs of 100k in two repositories 

 

500.000

1.000.000

1.500.000

2.000.000

2.500.000

Ins/h Down/h Del/h Purge/h

FS

Blob

Ins/h Down/h Del/h Purge/h 

FS 800.000 1.309.091 2.400.000 1.440.000 

Blob 24.870 33.488 1.028.571 34.286 



27 

Results and Graphs. Repositories (II) 
 The graph shows the times measured running the 

OpenProdoc core, the database and two repositories, a 

file system and a database Blob. 

 The speed with Blob is very low compared with the file 

system speed. 

 Even the delete speed, that doesn’t affect the actual 

storage is slower, probably by the general overload of the 

database.   

 The speed of blob storage can change a lot between 

different databases due to its different implementation. 

 Anyway,  25.000 docs/hour is enough for many systems. 

Some scenarios with small documents (icons, SMS, Twitter 

messages, IM messages, email, etc.) can be a use case. 



28 

Results and Graphs. Java Jvm (I) 
 Jvm monitor. Test of 10 series managing from 4.000 to 40.000 docs of 200k 

 



29 

Results and Graphs. Java Jvm (II) 
 The JVM contains the test program, the OpenProdoc 

Core and the HSQLDB client, so the numbers contain 

added values (in Class number, threads, heap, etc.) from 

both elements. 

 This would show what the overhead of embedding 

OpenProdoc with the HSQLDB client would be for an 

application. 

 Every set of tests can be observed by the peaks in CPU 

use (due to creating threads) and in the total number of 

threads. 

 The heap is always under 256 M and has a sudden drop 

when de garbage collector starts. 

 In this set of tests, 220.000 documents of 200k were 

inserted, downloaded and deleted. 

 



30 

Analysis and Conclusions (I) 
 The objectives of the test where: 

◦ To check the behaviour of OpenProdoc under stress conditions, 

detecting potential problems. 

◦ To measure the speed to manage documents 

◦ To detect the influence of different factors in the performance of 

OpenProdoc. 

 Regarding  the first point, the stability, resource 

utilization and overall functioning has been correct.  The 

tests discovered a potential error in date metadata for 

high concurrence scenarios that has been corrected 

after the first set of test. 

 The concurrency obtained with the test program is 

similar to a standard use of hundreds or thousands of 

users.  



31 

Analysis and Conclusions (II) 
 Regarding to speed, the obtained processing speed is 

high, especially considering that OpenProdoc is a 

document management system fully functional, with 

permissions for each document (not only document 

type or folder), user permissions, integrity and 

transaction management. 

 The influence of the different factors is more or less the 

expected, knowing the internal model and design of 

OpenProdoc, but after the tests there is a model that 

allows a more realistic estimation. 

 Perhaps the differences in performance between 

databases is striking, but probably,  modifying the default 

configuration the differences can be reduced. 



32 

Using OpenProdoc (I) 
 The recommended infrastructure for using 

OpenProdoc will be determined by different criteria. 

 The tests show that even with a small infrastructure is 

possible to obtain a high throughput, so the 

performance isn’t is the main factor. 

 Using it embedded in an application or with its own 

Web Client there are no big requirements, so the 

decision will be determined mainly by company 

standards (O.S., Database, etc.), security criteria and 

architecture requirements (High Availability, scale up, 

scale out, etc.). 

 A minimum configuration can be a computer with O.S. 

Linux 64 bits 8G Ram with the functionality of database 

server (HSQLDB o MySQL), repository (file system) 

and application server (Tomcat o Glassfish). 



33 

Using OpenProdoc (II) 
 A more standard configuration, sharing all the servers 

with other applications and services, would be: 

J2EE server: 

OpenProdoc core / Web Client 

Database Server 

File Server / NAS 



34 

Using OpenProdoc (III) 
 Finally, a Enterprise solution can be similar to: 

J2EE servers farm: 

OpenProdoc core / Web Client 

Database Server Cluster 

File Server / NAS - RAID N 



35 

More Information 
 

 

 

 
• http://code.google.com/p/openprodoc/ 

 
• Joaquin Hierro 
• openprodoc@gmail.com 

 


